1) Intro to information theory
1.1 Randan Vars

Tenses inequality:
For F convex, ie $f(a x+(1-a) y) \leq \alpha f(x)+(1-\alpha) f(y)$ we have $\mathbb{E} F(X) \geq f(\mathbb{E} X)$
e.g. $\left\langle x^{2}\right\rangle \geq\langle x\rangle^{2}$
1.2 Entropy

Entropy $=\underset{x-p}{E} \log \frac{1}{p(x)}$
KL DiN, $\quad D_{k L}(q \| p)=\sum_{x} q(x) \log \frac{q(x)}{p(x)}=\sum_{q} \log \left(\frac{1}{p}\right)$
Dree is not symmetric
From Rerende's notes:
We generally take of the density of the generative model and p to be the 'true" clevsity
yererally want to modify θ so that $q_{2} \rightarrow p$ $K L(q \| p)$ is of bits to commmiate q given that the receiver knows φ
$K L$ is unique divergence satisfying
i) locality:

$$
D(q \| p)=\int d x x(q, p, x)
$$

ii) invariance:
under $x \rightarrow x^{\prime}=\rho(x)$ we have D invariant

$$
\Rightarrow \int d x F(q, p, x)=\int d x^{\prime} F\left(\frac{q \circ q^{-1}\left(x^{\prime}\right)}{\left.p \operatorname{det} \frac{\partial x^{\prime}}{\partial x^{\prime}} \right\rvert\,}, \frac{p o \rho^{-1}\left(x^{\prime}\right)}{\left.\operatorname{det} \frac{\partial x^{\prime}}{\partial x^{\prime}} \right\rvert\,}, \rho^{-1}\left(x^{\prime}\right)\right)
$$

$\Rightarrow f$ must take the form $f\left(\frac{q}{p}\right) \mu(x) \Rightarrow f\left(\frac{q}{p}\right) p$ or $f\left(\frac{q}{p}\right) q$
iii) Subsystem independence (ie additivity ofindep sub-domans)

$$
\Rightarrow \quad F\left(\frac{q}{p}\right)=\log \frac{q}{p}
$$

Back to Montonari
Entropy M satisfies

1) $M_{x} \geq 0$ proof: Eta $\geq-\log$ Ep ≥ 0
2) $H_{x}=0$ only for $p(x)=\delta_{x}$
3) Among all distributions $p(x) \quad H$ is maximized for $p=1 / m$ proof: $D(p \mid \bar{P})=\log _{2} M-M(p) \geq 0$
4) For x, y indep $M_{x, y}=H_{x}+H_{y}$
5) For X, Y geneni $M_{x y}=M_{y}+H_{y}$
6) For X_{1}, X_{2} disjoint thee $M_{X}\left(q_{12}=\right.$ Prob $x \in X_{12}$ resp.
then $M_{x}=H(q, r)$
$-q_{1} \log q_{1}-q_{2} \log q_{2}-q_{1} \sum_{x \in x_{1}} r_{1}(x) \log r(x)-q_{2} \sum_{x \in r_{2}} r\left(\log \log r_{2}(1)\right.$
1.3 Sequences of random variables

DeF entropy rate $h_{X}=\lim _{N \rightarrow \infty} M\left[x_{1} \ldots x_{N}\right] / N$
egg. 1: x_{t} indep $\Rightarrow P_{N}\left(x_{1}, \cdots, x_{N}\right)=\prod_{t=1}^{1} p\left(x_{i}\right) \Rightarrow h_{X}=H(p)$
e.g. 2: Marker Chain
$\left\{p_{1}(x), x \in x\right\}$ an initial state
$\{W(x \rightarrow y)\}_{x, y \in x}$ are transition probabilities, $\sum_{y} w(x+y)=1$

$$
\Rightarrow P_{N}\left(x_{1}, \cdots x_{N}\right)=p_{1}(x) \prod_{t=1}^{N-1} w\left(x_{+} \rightarrow x_{++1}\right) \quad \lim _{t \rightarrow \infty} p_{t}(t)=p^{*}(x)
$$

then $h_{x}=-\sum_{x} p^{2}(x) \sum_{y} w(x+y) \log w(x+y)=M_{y \mid x} \leftarrow$ ic sum over all and use antony $H(x, r)$
1.4 Correlated vars \& Mutral inso

Conditinal entropy

$$
\begin{aligned}
& H_{Y \mid x}:=-\sum_{x} p(x) \sum_{y} p(y(x) \text { loy } p(y \mid x) \text { no log on } p(x) \text { ! } \\
& \text { N.B. } \quad H_{x, y}=-\sum_{x, y} p(x y) \log (p(x y))=-\sum_{x, y} p(x) p(y \mid x) \log p(x) p(y(x) \\
& =H_{Y}\left(x+\sum_{x} p(x) \log p(x) \sum_{y} p(x)=M_{Y I X}+M_{x}\right.
\end{aligned}
$$

Mutual inso:

$$
\begin{aligned}
& D_{k L}(p(x y) \| p(x) p(y)) \\
& \left.=\sum_{x, y} p(x) p(y \mid x) \log \frac{p(y \mid x)}{p(y)}=M_{y}-M_{y} \right\rvert\, x \\
& =H_{x}-H_{x / y} \\
& I_{x, y}=\mathbb{E}_{x, y}\left[-\log \frac{p(x) p(y)}{p(x, y)}\right] \geq-\log _{x, y}^{E}\left[\frac{p(x) p(y)}{p(x, y)}\right] \geq 0 \\
& \int_{\text {f(a) }}^{\text {a }} \text { Sply } \\
& \text { "the decrease } \\
& \text { fin Y's entropy } \\
& \text { on } \times \text { nationy } \\
& \int_{p(x)} p_{p}(y)
\end{aligned}
$$

Data processing inequality: For Markov chain $x \rightarrow Y \rightarrow Z$

$$
\begin{aligned}
& \Rightarrow p(x, y, z)=p_{1}(x) w_{2}(x \rightarrow y) w_{3}(y \rightarrow 2) \\
& \text { Zemma: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { here } I_{x y / z}=-\frac{\mathbb{E}}{x, z} \log \frac{p(x \mid z) p(y z)}{p(x y y)} \\
& x y z p(x y(z) \\
& \Rightarrow I_{y,(y z)}=I_{x, z}+I_{x, y \mid z}^{2} \\
& =I_{x, y}+I_{x, y / y} \text { by Herkov } \quad \Rightarrow I_{x, z} \leq I_{x, y} \\
& \begin{aligned}
& =I_{x, z}+I_{x, y / z} \\
& =I_{x, y}+I_{i, z / y} \text { by Hertov }
\end{aligned} \Rightarrow I_{x, z} \leq I_{x, y} \\
& \Rightarrow p(x, y, z)=p_{1}, w_{2}(x+y) w_{3}(y>2)
\end{aligned}
$$

Take $Z=F(y) \Rightarrow I_{X, y} \geq I_{X, F(y)}$

Fans inequality: Relates the info loss in a noisy channel to the probability ot micharacteniston error take $x \rightarrow Y \rightarrow \hat{x} \quad \mathrm{w} / \quad \hat{x}=g(Y)$ an estimate of x

$$
\begin{aligned}
& \operatorname{let} E=\mathbb{1}_{x \neq \hat{x}}, \quad P_{e}=\operatorname{Pr}(X \neq \hat{X})=\mathbb{E}(E) \\
& H_{X, E / Y}=H_{X / Y}+M_{E I X, Y} \\
& \text { i) } H_{E \mid X, Y}=0 \\
& =H_{E / Y}+H_{X I E, Y} \\
& \text { ii) } H_{E I Y} \leq H_{E}=x\left(P_{e}\right) \\
& \text { iii) } H_{X \mid E, r}=\left(1-P_{e}\right) H_{X \mid E=Q r}+P_{e} H_{X|=|r|} \\
& =P_{e} H_{x \mid E=L Y} \leq P_{e} \log (|x|-1) \\
& H_{X / Y}=M_{E / Y}+H_{X \mid E, Y} \leq M_{E}+P_{e} M_{X \mid E=1 Y} \leq H\left(P_{e}\right)-P_{e} \lg (|X|-1)
\end{aligned}
$$

${ }^{\text {a }}$ bund on uncertainty of $X I Y$
E Uncertainty of $x \neq \hat{x}$ ie P_{e}
Terror ${ }^{*}$. $\mathcal{L}($ uniform -1)

Exercise $1.6 \quad p(1)=1-p$ for k values

$$
p(x)=\frac{p}{k-1}
$$

take Y indep of $X \Rightarrow M(X \mid Y)=H(X)$

$$
\Rightarrow \quad H\left(P_{e}\right)+P_{e} \log (x-1) \geq H(x)
$$

if p small so $1-p>\frac{p}{K-1}$ guess 1 always

$$
\begin{array}{r}
\Rightarrow P_{\text {error }}=p \Rightarrow-p \log p-((-p) \log (1-p)+p \log (k-1) \leq H(x) \\
H(x)=-(-p) \log (1-p)-(-j) \cdot p, \log \frac{p}{k-1} \\
\Rightarrow \text { Equality }
\end{array}
$$

1.5 Data Compression

Sequence $\underline{x}=\varepsilon X_{1} \cdots X_{N} \xi$ For $X_{i} \in \mathcal{X}$ Finite alporat assume X_{i} are random
store a given realization $\underline{x}=\left\{x_{1} \cdots x_{N}\right\}$ as compactly as possible $\left.w: \quad x^{N} \rightarrow 50,1\right\}^{*}$

$$
\underline{x} \rightarrow w(x)
$$

Often we take a boner stream \rightarrow books $\underline{x}^{\prime} \cdots \underline{x}^{-r}$ encode each black $w\left(x^{\prime}\right) \cdots w\left(\underline{x}^{\prime}\right)$ reed concatenation of blocks to be uniquely decidable sate if $W_{x, x^{\prime}} W(x)$ is not prefix of $w\left(x^{\prime}\right)$
"instantaneous codes"

$$
L(w)=\mathbb{E}_{\underline{x} \in \chi^{N}} l_{w}(\underline{x}) \longleftarrow \text { length of } w(x)
$$

take $N=1$

$$
\begin{aligned}
x & =51, \cdots, 8\} \\
p(i) & =2^{-i} \quad i=1 \cdots z \\
p(8) & =2^{-7} \quad i=8
\end{aligned}
$$

x	$p(x)$	$w_{1}(x)$	$w_{2}(x)$
1	$1 / 2$	00	0
2	$/ 4$	001	110
3	148	010	110
4	$1 / 16$	011	1110
5	$1 / 28$	100	1110
6	$1 / 4$	101	11110
7	$1 / 118$	110	11110
8	$1 / 128$	111	1111110

$$
\begin{aligned}
& L\left(w_{1}\right)=3 \\
& L\left(w_{2}\right)=\sum_{i=1}^{7} 2^{-i} i+8 \cdot 2^{-7} \approx 2
\end{aligned}
$$

\leftarrow binary free where no codeword node has ancestor cozlewor us

What is best w for a given source?
let L_{N}^{*} be optimal acheicuble instantaneous cade length. Then,

1. $\quad H_{\underline{L}}=L_{N}^{*}=H_{\underline{x}}+1$
2. If the source has finite entropy rate $h=\lim _{N \rightarrow \infty} \frac{1}{N} M_{\underline{X}}$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} L_{N}^{*}=h
$$

Lemma

$$
\sum_{\underline{x} \in x^{n}} 2^{-\ln (x)} \leq 1
$$

follows from "set of all leaves of binary
Conversely any set of lengths $\left\{l_{w}(x)\right\}_{x \in x^{N}}$ satistying Kraft have a code \rightarrow start from smallest $\operatorname{lr}(x)$ and take First binary seq. of that length.
Goal: Find codewords ${ }_{w}^{(x)}(x)$ that minimize L subject to Kraft
First, if $\&$ could be real-valued

$$
\begin{aligned}
& \quad \min _{1} \sum_{x \geq 0} p(x) l(x)+\alpha\left(\sum_{x} 2^{-l(x)}-1\right) \\
& \Rightarrow p(x)-\alpha 2^{-l} \log _{2}=0 \\
& l=-\log _{2} p(x)-c \quad c=0 \text { From trot } \\
& \Rightarrow l=r-\log _{2} p(x) 7 \quad \text { also then wortes } \\
& \quad M_{x} \leq L=H_{x}+1
\end{aligned}
$$

"Sharon code", close to optimal for bonce strings

Not ideal for shorter sequences
If there Hutiman coding is optimal
may aspicm super long
codeword when shorter ones
are available
require of $\left(|x|^{\prime \prime}\right)^{\text {memory }}$ to envomate all $l(x)$
1.6 Data Transmission

Can have a channel with insertions
Consider a sremoryless channel (moke acts indep on each bit)

$$
Q(y \mid x)=\prod_{i=1}^{N} Q\left(y_{i} \mid x_{i}\right)
$$

BSD: $0 \xrightarrow{1-p} 0$

$$
1 \xrightarrow[1-p]{\chi_{p}^{p}} 1
$$

BED: $0 \underset{\epsilon \boldsymbol{D}^{1-\epsilon}}{ } 0$

$\begin{aligned} z: \quad 0 & \xrightarrow{1} 0 \\ 1 & \xrightarrow[p]{1-p} 1\end{aligned}$

Channel capacity C :

$$
\max _{p(x)} I_{X, Y}
$$

reduction
in uncertainty
of Y l troukedye of x, vice versa
We will see C characterizes can be tramemitted Faith fully amount of ins that can be tramemitted faithfully through the channel

Eeg. $B S C$, send a bit drawn from Bor (q)

$$
\begin{aligned}
& \text { max } I_{x, y}=\sum_{x=\{0,1\}} p(x) \sum_{y=\{0,1\}} p(y \mid x) \log \frac{p(y \mid x)}{p(y)} \\
& p(y=1)=p(y=11 x=1) p(x=1)+p(y=1 / x=0) p(x=0) \\
& =(1-p)(1-q)+p q \\
& p(y=0)=(1-p) q+p(1-q) \\
& \Rightarrow I_{X, Y}=q \cdot\left[(1-p) \log _{(1-p) q+p(1-q)}+p \log \frac{1-p}{(1-p)(-q)+p}\right] \\
& +(1-q) \cdot\left[p \log \frac{p}{(1-p)+p(1-q)}+(1-p) \log \frac{1-p}{(1-p)(-q)+p q}\right]
\end{aligned}
$$

We see $D_{q} I_{x, y}=0$ when $q=1 / 2$
Foster

$$
\text { way } \quad \begin{aligned}
M(Y)-M(Y \mid X)= & H((1-p)(1-\alpha)+p \alpha)-H(p) \\
\partial=\partial \Rightarrow & (2 p-1) \log \frac{1-p}{\rho} \Rightarrow p=0 \\
& \rightarrow\left(2 p-\nu_{\alpha}=p-1 \Rightarrow \alpha=1 / 2\right. \\
\Rightarrow \quad C=\mu\left(\frac{1}{2}\right)-\alpha(p)= & 1-\alpha(p)
\end{aligned}
$$

E.g. BEC

$$
I_{x y}=q\left[(1-\epsilon) \log \frac{1-\epsilon}{q(1-\epsilon)}+\epsilon \log \frac{\epsilon}{\epsilon}\right]
$$

$$
\begin{aligned}
& p(y=0)=q(1-\epsilon) \\
& p(y=1)=\gamma-q)(1-\epsilon) \\
& p(y=*)=\epsilon
\end{aligned}
$$

$$
+(1-Q)\left[(1-\epsilon) \lg \frac{1-\epsilon}{(1-a)(1-\epsilon)}+\epsilon \log \frac{\epsilon}{\epsilon}\right]
$$

$$
p(y=*)=\epsilon \quad D_{q} I_{y y}=0 \quad \text { when } q=1 / 2
$$

$$
\text { Fastor nay: } M(Y)-H(Y \mid X)=\mu(\varepsilon)+(1-\varepsilon) \mathcal{H}(\alpha)-\sec (z)
$$

$$
\begin{aligned}
H(Y) & \left.=M\left(Y_{\epsilon}^{?} *\right)+\sum P\left(x^{?}\right) \operatorname{He}(Y)^{2}\right) \quad \partial_{\alpha}=0 \Rightarrow(1-\alpha) \operatorname{lq}_{2} \frac{1-\alpha}{\alpha} \Rightarrow \alpha=1 / 2 \\
& =2(E)+(1-\epsilon) \operatorname{H}(q) \quad \Rightarrow \quad C=1-\varepsilon
\end{aligned}
$$

Eg $\quad z$-chonncel $\quad \alpha=P(0) \quad P(y-0)=p+\alpha(1-p) \quad P(y=1)=(-(-))(1-p)$

Acsume each bit is random -sumprsingly, shamon's theorem
torane each bit o vandom -sapringly that shere 5 no less

$$
\{0,\}^{m} \Rightarrow m \rightarrow \underline{x}(m) \in\{0,1\}^{n}
$$ in generality

2^{n} colewords in F_{2}^{N}

$$
Q(y \mid \underline{x})=\pi Q\left(y_{i} \mid x_{i}\right)
$$

$R=\frac{M}{N}$ is the rate

$$
\begin{aligned}
& \Rightarrow \alpha=1-\frac{1}{\left.(1-p)\left(1+2^{(p p}\right)-p\right)} \\
& C=\mu\left(\frac{1}{1+2^{s(p)}}\right)-\frac{s(p)}{1+2^{s p)}}=\log \left(1+2^{-s(p)}\right), s(p)=\frac{\alpha(\rho)}{1-p} \\
& =\log \left(1+(1 p) p^{p 1-p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P_{B}(m)=\sum_{\neq} Q(y \mid \underline{x}(m) \quad \mathbb{I}(d(\not y) \not \leq m) \\
& P_{B}^{\text {max }}=\max _{m} P_{B}(m) \quad \text { "wast case" } \\
& P_{B}^{a v}=\frac{1}{2^{n}} \sum_{m \in \in 0,1]^{n}} P_{B}(m) \quad \in \text { more common }
\end{aligned}
$$

Eg. 1 Repetition k (odd) times

$$
R=\frac{1}{k}
$$

Exercise:

Shannon, 1948
For every rate $R<C$, there is a sequence o^{5} codes C_{N} of length N sit. : $R_{N} \rightarrow R \quad P_{B}^{\text {avg }} \rightarrow 0$ as $N \rightarrow \infty$ conversely, any such sequence has $R<C$ Intuition for the role of capacity

$$
M_{y \mid \underline{x}}=N H_{y \mid x} \Rightarrow z^{N M_{y \mid x}} \text { autputs }
$$

need $d(y)$ to map all of tron to n \& possible outputs is NHl
\Rightarrow can distinguish $2^{N H y} / 2^{N H y l x}$ codewords

$$
=2^{N\left(M_{y}-H_{y \mid x}\right)}=2^{N I_{x, y}}
$$

one needs to be able to send all 2^{M} codewords

$$
\begin{aligned}
\rightarrow \quad 2^{M} & =2^{N R} \leftharpoondown 2^{N I_{X Y}} \\
& \Rightarrow R=I_{X, Y} \leq C
\end{aligned}
$$

This also gives another inters of $I_{x y}$ con distinguish $2^{N I_{x, y}}$ codewords

Furs about channel coding:
For p_{1}, p_{2} indep channels

$$
\begin{aligned}
\left(p_{1} \times p_{2}\right)\left(y_{1}, y_{2}\right)\left(\left(x_{1}, x_{2}\right)\right) & =p_{1}\left(y_{1} \mid x_{1}\right) p_{2}\left(y_{2} \mid x_{2}\right) \\
C\left(p_{1} \times p_{2}\right)=\sup _{p_{1}, x_{2}} I\left(x_{1} x_{2} ; Y_{1}, y_{2}\right) & =\sup _{p_{x_{1}, x_{2}}} I\left(x_{1}, y_{1}\right)+I\left(x_{2}, y_{2}\right) \\
& \geq C\left(p_{1}\right)+C\left(p_{2}\right)
\end{aligned}
$$

Also

$$
\begin{aligned}
& I\left(x_{1} r_{2} ; Y_{1} Y_{2}\right)=H\left(Y_{1} Y_{2}\right)-H\left(Y_{1} Y_{2} \mid x_{1} x_{2}\right) \\
&=H\left(Y_{1}, Y_{2}\right)-H\left(Y_{1} \mid x_{1}\right)-H\left(Y_{2} \mid x_{2}\right) \\
& \leq H\left(Y_{1}\right)+M\left(y_{2}\right)-\prime_{1}^{\prime} \\
&=I\left(x_{1}: Y_{1}\right)+I\left(x_{2} ; Y_{2}\right) \\
& \Rightarrow C\left(p_{1}, x p_{2}\right) \leq C\left(p_{1}\right)+C\left(p_{2}\right) \\
& \Rightarrow C\left(p_{1} \times p_{2}\right)=C\left(p_{1}\right) \times C\left(p_{2}\right)
\end{aligned}
$$

